Question:

The pole of the line $\dfrac{x}{a} + \dfrac{y}{b} = 1$ with respect to the circle $x^2 + y^2 = c^2$ is

Show Hint

Use the standard pole formula: Pole of $\dfrac{x}{a} + \dfrac{y}{b} = 1$ w.r.t. $x^2 + y^2 = c^2$ is $\left(\dfrac{c^2}{a}, \dfrac{c^2}{b}\right)$.
Updated On: May 18, 2025
  • $\left( \dfrac{c^2}{a}, \dfrac{c^2}{b} \right)$
  • $\left( \dfrac{c^2}{b}, \dfrac{c^2}{a} \right)$
  • $\left( \dfrac{c}{a}, \dfrac{c}{b} \right)$
  • $\left( \dfrac{c}{b}, \dfrac{c}{a} \right)$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The general formula for the pole of line $\dfrac{x}{a} + \dfrac{y}{b} = 1$ with respect to the circle $x^2 + y^2 = c^2$ is:
$\left( c^2 \cdot \dfrac{1}{a}, c^2 \cdot \dfrac{1}{b} \right) = \left( \dfrac{c^2}{a}, \dfrac{c^2}{b} \right)$
Was this answer helpful?
0
0