A manufacturer makes two types of toys A and B. Three machines are needed for production with the following time constraints (in minutes): \[ \begin{array}{|c|c|c|} \hline \text{Machine} & \text{Toy A} & \text{Toy B} \\ \hline M1 & 12 & 6 \\ M2 & 18 & 0 \\ M3 & 6 & 9 \\ \hline \end{array} \] Each machine is available for 6 hours = 360 minutes. Profit on A = Rupee 20, on B = Rupee 30.
Formulate and solve the LPP graphically.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.