For a zero-order reaction, the plot of concentration vs time is a straight line having a negative slope.
Therefore, the correct answer is first-order equation.
What mass of 75% pure CaCO3 will be required to neutralize 50 ml of 0.5M HCL solution according to the following reaction? \[ {CaCO}_3 + 2{HCl} \to {CaCl}_2 + {CO}_2 + {H}_2{O} \]
List I | List II | ||
---|---|---|---|
A | Two or more alternative forms of a gene | I | Back cross |
B | Cross of F1 progeny with homozygous recessive parent | II | Ploidy |
C | Cross of F progeny with any of the parents | III | Allele |
D | Number of chromosome sets in plant | IV | Test cross |
List I (Sub Phases of Prophase I) | List II (Specific characters) | ||
A | Diakinesis | I | Synaptonemal complex formation |
B | Pachytene | II | Completion of terminalisation of chiasmata |
C | Zygotene | III | Chromosomes look like thin threads |
D | Leptotene | IV | Appearance of recombination nodules |
List-I | List-II | ||
(A) | mI | (I) | Shape of orbital |
(B) | ms | (II) | Size of orbital |
(C) | I | (III) | Orientation of orbital |
(D) | n | (IV) | Orientation of spin of electron |
Chemical kinetics is the description of the rate of a chemical reaction. This is the rate at which the reactants are transformed into products. This may take place by abiotic or by biological systems, such as microbial metabolism.
The speed of a reaction or the rate of a reaction can be defined as the change in concentration of a reactant or product in unit time. To be more specific, it can be expressed in terms of: (i) the rate of decrease in the concentration of any one of the reactants, or (ii) the rate of increase in concentration of any one of the products. Consider a hypothetical reaction, assuming that the volume of the system remains constant. R → P
Read More: Chemical Kinetics MCQ