Step 1: Find two vectors in the plane
Given points: \( A(2,1,0) \), \( B(5,0,1) \), \( C(4,1,1) \).
Vector \( \overrightarrow{AB} = B - A = \langle 5-2, 0-1, 1-0 \rangle = \langle 3, -1, 1 \rangle \).
Vector \( \overrightarrow{AC} = C - A = \langle 4-2, 1-1, 1-0 \rangle = \langle 2, 0, 1 \rangle \).
Step 2: Find the normal vector to the plane
Compute the cross product \( \overrightarrow{AB} \times \overrightarrow{AC} \):
\[ \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -1 & 1 \\ 2 & 0 & 1 \end{vmatrix} \]
\[ = \mathbf{i}((-1)(1)-(1)(0)) - \mathbf{j}((3)(1)-(1)(2)) + \mathbf{k}((3)(0)-(-1)(2)) \]
\[ = -\mathbf{i} - \mathbf{j} + 2\mathbf{k} = \langle -1, -1, 2 \rangle \]
Step 3: Write the plane equation
Using point \( A(2,1,0) \) and normal vector \( \langle -1, -1, 2 \rangle \):
\[ -1(x-2) -1(y-1) + 2(z-0) = 0 \]
Simplify:
\[ -x + 2 - y + 1 + 2z = 0 \]
\[ -x - y + 2z + 3 = 0 \]
\[ x + y - 2z = 3 \]
Step 4: Find x-intercept
For x-intercept, set \( y = z = 0 \):
\[ x + 0 - 0 = 3 \]
\[ x = 3 \]
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: