Given:
- Point \( A = (4, 4) \)
- Point \( Q \) lies on the circle:
\[
x^2 + y^2 = 9
\]
- Point \( P \) divides segment \( QA \) internally in ratio 1:2.
Step 1: Let \( Q = (x, y) \) on the circle \( x^2 + y^2 = 9 \).
Step 2: Coordinates of \( P \), dividing \( Q A \) in ratio 1:2 internally:
\[
P = \left( \frac{1 \cdot 4 + 2 \cdot x}{1 + 2}, \frac{1 \cdot 4 + 2 \cdot y}{1 + 2} \right) = \left( \frac{4 + 2x}{3}, \frac{4 + 2y}{3} \right)
\]
Step 3: Find the locus of \( P \) by eliminating \( x, y \).
Express \( x, y \) in terms of \( P = (X, Y) \):
\[
X = \frac{4 + 2x}{3} \implies 3X = 4 + 2x \implies 2x = 3X - 4 \implies x = \frac{3X - 4}{2}
\]
\[
Y = \frac{4 + 2y}{3} \implies y = \frac{3Y - 4}{2}
\]
Step 4: Since \( Q = (x, y) \) lies on the circle:
\[
x^2 + y^2 = 9
\]
Substitute \( x, y \):
\[
\left( \frac{3X - 4}{2} \right)^2 + \left( \frac{3Y - 4}{2} \right)^2 = 9
\]
Multiply both sides by 4:
\[
(3X - 4)^2 + (3Y - 4)^2 = 36
\]
Expand:
\[
9 X^2 - 24 X + 16 + 9 Y^2 - 24 Y + 16 = 36
\]
\[
9 X^2 + 9 Y^2 - 24 X - 24 Y + 32 = 36
\]
\[
9 X^2 + 9 Y^2 - 24 X - 24 Y = 4
\]
Step 5: Divide entire equation by 9:
\[
X^2 + Y^2 - \frac{24}{9} X - \frac{24}{9} Y = \frac{4}{9}
\]
\[
X^2 + Y^2 - \frac{8}{3} X - \frac{8}{3} Y = \frac{4}{9}
\]
Step 6: Complete the squares:
\[
X^2 - \frac{8}{3} X + Y^2 - \frac{8}{3} Y = \frac{4}{9}
\]
Add and subtract \( \left( \frac{4}{3} \right)^2 = \frac{16}{9} \) for both \( X \) and \( Y \):
\[
\left( X^2 - \frac{8}{3} X + \frac{16}{9} \right) + \left( Y^2 - \frac{8}{3} Y + \frac{16}{9} \right) = \frac{4}{9} + \frac{16}{9} + \frac{16}{9}
\]
\[
\left( X - \frac{4}{3} \right)^2 + \left( Y - \frac{4}{3} \right)^2 = \frac{36}{9} = 4
\]
Step 7: The locus of \( P \) is a circle with center \( \left( \frac{4}{3}, \frac{4}{3} \right) \) and radius \( 2 \).
Step 8: The perimeter of the locus (circumference of the circle) is:
\[
2 \pi \times 2 = 4 \pi
\]
Therefore, the perimeter is:
\[
\boxed{4 \pi}
\]