The perimeter of a sector is constant. If its area is to be maximum, the sectorial angle should be:
Show Hint
Optimization with Constraint}
Express all variables using the given constraint
Use calculus to find max/min of the quantity
Convert constraint into a single-variable function before deriving
Let \( r \) be the radius and \( \theta \) the central angle (in radians).
Perimeter \( P = r + r\theta = \text{constant} \Rightarrow r = \frac{P}{1 + \theta} \)
Area \( A = \frac{1}{2}r^2 \theta = \frac{1}{2}\left(\frac{P}{1 + \theta}\right)^2 \theta \)
Maximize \( A(\theta) \) by differentiation:
\[
A(\theta) = \frac{1}{2} \cdot \frac{P^2 \theta}{(1 + \theta)^2}
\Rightarrow \text{Maximize: } f(\theta) = \frac{\theta}{(1 + \theta)^2}
\]
Using calculus (first derivative test), the maximum occurs at \( \theta = 1 \Rightarrow \theta = 2c \)