\([FeCl_4]^{-} \quad \text{and} \quad [Fe(CO)_4]^{2-}\)
\([Co(CO)_4]^{-} \quad \text{and} \quad [CoCl_4]^{2-}\)
\([Ni(CO)_4] \quad \text{and} \quad [Ni(CN)_4]^{2-}\)
\([Cu(py)_4]^{+} \quad \text{and} \quad [Cu(CN)_4]^{3-}\)
Arrange the given metal ions in increasing order of number of unpaired electrons in the low spin complexes formed by \( \text{Mn}^{3+}, \text{Cr}^{3+}, \text{Fe}^{3+}, \text{Co}^{3+} \)
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
A coordination compound holds a central metal atom or ion surrounded by various oppositely charged ions or neutral molecules. These molecules or ions are re-bonded to the metal atom or ion by a coordinate bond.
A coordination entity composes of a central metal atom or ion bonded to a fixed number of ions or molecules.
A molecule, ion, or group which is bonded to the metal atom or ion in a complex or coordination compound by a coordinate bond is commonly called a ligand. It may be either neutral, positively, or negatively charged.