
The correct answer is 41500
The van 't Hoff equation for osmotic pressure (\(\pi\)) is:
\[ \pi = CRT \]
Dividing both sides by concentration (\(C\)):
\[ \frac{\pi}{C} = RT \times \frac{1}{M} \]
From the graph, the slope (\(\frac{\pi}{C}\)) is determined to be 6.0 atm L g$^{-1}$.
Using the relation: \[ M = \frac{RT}{\text{slope}} \]
Substituting the values:
\[ M = \frac{0.083 \times 300}{6.0} = 41500 \, \text{g mol$^{-1}$}. \]
Thus, the molar mass of PVC is 41500 g \(mol^{-1}\).
The molar mass of a polymer like PVC can be calculated from osmotic pressure data using the van 't Hoff equation. The slope of the \(\pi / C\) graph provides critical information for this calculation.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).

In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by:
A solution is a homogeneous mixture of two or more components in which the particle size is smaller than 1 nm.
For example, salt and sugar is a good illustration of a solution. A solution can be categorized into several components.
The solutions can be classified into three types:
On the basis of the amount of solute dissolved in a solvent, solutions are divided into the following types: