We are given \( y = \tan^{-1}(\sin(\sqrt{x})) \).
To find the points where the tangent is parallel to the X-axis, we set \( \frac{dy}{dx} = 0 \).
Using the chain rule:
\[
\frac{dy}{dx} = \frac{1}{1 + (\sin(\sqrt{x}))^2} \cdot \cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}
\]
For \( \frac{dy}{dx} = 0 \), we must have \( \cos(\sqrt{x}) = 0 \), since the other terms are never zero in the domain.
So, \( \sqrt{x} = \frac{\pi}{2}, \frac{3\pi}{2}, \dots, \frac{15\pi}{2} \Rightarrow x = \left( \frac{(2n + 1)\pi}{2} \right)^2 \) for \( 0 \le x \le 8\pi^2 \)
At those points, \( \sin(\sqrt{x}) = \pm1 \Rightarrow y = \tan^{-1}(\pm1) = \pm \frac{\pi}{4} \)
Thus, the ordinates are \( \pm \dfrac{\pi}{4} \)