Step 1: Understand the derivation of a 3-hour UH.
To derive a 3-hour UH from the given 1-hour UH, we use the principle of superposition. The 3-hour UH is obtained by summing up the ordinates of the 1-hour UH spaced 3 hours apart.
Let the ordinates of the derived 3-hour UH be \( Q_3 \).
Step 2: Calculate the ordinates of the 3-hour UH.
The calculation for \( Q_3 \) is done as follows:
\[
Q_3(t) = Q_1(t) + Q_1(t-3) + Q_1(t-6),
\]
where \( Q_1(t) \) represents the ordinates of the 1-hour UH.
For times less than 3 hours, only \( Q_1(t) \) contributes; for times between 3 and 6 hours, \( Q_1(t) + Q_1(t-3) \) contribute; and for times greater than 6 hours, all three terms contribute.
Step 3: Tabulate the ordinates of the 3-hour UH.
\begin{table}[h!]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Time (hours) & \( Q_1(t) \) & \( Q_1(t-3) \) & \( Q_1(t-6) \) & \( Q_3(t) \)
\hline
0 & 0 & - & - & 0
\hline
1 & 13 & - & - & 13
\hline
2 & 50 & - & - & 50
\hline
3 & 80 & 0 & - & 80
\hline
4 & 95 & 13 & - & 108
\hline
5 & 85 & 50 & - & 135
\hline
6 & 55 & 80 & 0 & 135
\hline
7 & 35 & 95 & 13 & 143
\hline
8 & 15 & 85 & 50 & 150
\hline
9 & 10 & 55 & 80 & 145
\hline
10 & 3 & 35 & 95 & 133
\hline
11 & 0 & 15 & 85 & 100
\hline
12 & 0 & 10 & 55 & 65
\hline
\end{tabular}
\caption{Derived 3-hour UH ordinates}
\end{table}
Step 4: Identify the peak discharge.
From the table, the peak discharge is:
\[
Q_{\text{peak}} = 150 \, \text{m\(^3\)/s}.
\]
Conclusion: The peak discharge for the 3-hour UH is \( 150 \, \text{m\(^3\)/s} \).