The most suitable test for measuring the permeability of clayey soils in the laboratory is ___________.
Two soils of permeabilities \( k_1 \) and \( k_2 \) are placed in a horizontal flow apparatus, as shown in the figure. For Soil 1, \( L_1 = 50 \, {cm} \), and \( k_1 = 0.055 \, {cm/s} \); for Soil 2, \( L_2 = 30 \, {cm} \), and \( k_2 = 0.035 \, {cm/s} \). The cross-sectional area of the horizontal pipe is 100 cm², and the head difference (\( \Delta h \)) is 150 cm. The discharge (in cm³/s) through the soils is ........ (rounded off to 2 decimal places).
A 6 m thick clay stratum has drainage at both its top and bottom surface due to the presence of sand strata. The time to complete 50% consolidation is 2 years.
The coefficient of volume change (\(m_v\)) is \(1.51 \times 10^{-3}\ {m}^2/{kN}\) and the unit weight of water is \(9.81\ {kN/m}^3\).
The coefficient of permeability (in m/year) is __________ (round off to three decimal places).
In levelling between two points A and B on the opposite banks of a river, the readings are taken by setting the instrument both at A and B, as shown in the table. If the RL of A is 150.000 m, the RL of B (in m) is ....... (rounded off to 3 decimal places).
A one-way, single lane road has traffic that consists of 30% trucks and 70% cars. The speed of trucks (in km/h) is a uniform random variable on the interval (30, 60), and the speed of cars (in km/h) is a uniform random variable on the interval (40, 80). The speed limit on the road is 50 km/h. The percentage of vehicles that exceed the speed limit is ........ (rounded off to 1 decimal place).