Define symmetric relations: A relation \( R \) is symmetric if \( (a, b) \in R \implies (b, a) \in R \). A relation is reflexive if \( (a, a) \in R \) for all \( a \).
Count total relations:
\[ \text{Total relations} = 2^{n^2} \text{ for } n = 4. \]
\[ \text{Total relations} = 2^{4^2} = 2^{16} = 65536. \]
Count reflexive relations: Reflexive pairs: \( (1, 1), (2, 2), (3, 3), (4, 4) \) (4 pairs). Remaining symmetric pairs: \( (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) \) (6 pairs).
\[ \text{Total reflexive relations} = 2^6 = 64. \]
Count symmetric relations:
\[ \text{Symmetric relations} = 2^{\binom{n}{2} + n} = 2^{6 + 4} = 2^{10} = 1024. \]
Non-reflexive symmetric relations:
\(\text{Non-reflexive symmetric relations} = \text{Total symmetric relations} - \text{Reflexive symmetric relations} = 1024 - 64 = 960.\)
Thus, the answer is: 960
Let \( A = (1, 2, 3, \dots, 20) \). Let \( R \subseteq A \times A \) such that \( R = \{(x, y) : y = 2x - 7 \} \). Then the number of elements in \( R \) is equal to:
Let $A = \{5n - 4n - 1 : n \in \mathbb{N}\}$ and $B = \{16(n - 1): n \in \mathbb{N}\}$ be sets. Then:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.