Question:

The number of solutions of the equation sin x = cos2 x in the interval (0, 10) is _____.

Updated On: Sep 24, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 4

Solution and Explanation

The correct answer is 4
The given equation is sin x = cos2 x
This can be stated as
sin2x + sinx-1 = 0
Use the quadratic formula 
\(sinx = \frac{-1+\sqrt5}{2} = +ve\)
Only 4 roots
Consider the following graph :

Fig. Graph

Therefore , the number of solutions for this equation is 4 solutions.

Was this answer helpful?
0
0

Concepts Used:

Trigonometric Equations

Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.

A list of trigonometric equations and their solutions are given below: 

Trigonometrical equationsGeneral Solutions
sin θ = 0θ = nπ
cos θ = 0θ = (nπ + π/2)
cos θ = 0θ = nπ
sin θ = 1θ = (2nπ + π/2) = (4n+1) π/2
cos θ = 1θ = 2nπ
sin θ = sin αθ = nπ + (-1)n α, where α ∈ [-π/2, π/2]
cos θ = cos αθ = 2nπ ± α, where α ∈ (0, π]
tan θ = tan αθ = nπ + α, where α ∈ (-π/2, π/2]
sin 2θ = sin 2αθ = nπ ± α
cos 2θ = cos 2αθ = nπ ± α
tan 2θ = tan 2αθ = nπ ± α