Using the identity \(\sin C - \sin D = 2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)\), we have:
\[
2\cos\left(\frac{7\theta + 3\theta}{2}\right)\sin\left(\frac{7\theta - 3\theta}{2}\right) = \sin 4\theta
\]
\[
2\cos(5\theta)\sin(2\theta) = \sin 4\theta
\]
\[
2\cos(5\theta)\sin(2\theta) = 2\sin(2\theta)\cos(2\theta)
\]
\[
2\sin(2\theta)\left(\cos(5\theta) - \cos(2\theta)\right) = 0
\]
So, either \(\sin(2\theta) = 0\) or \(\cos(5\theta) - \cos(2\theta) = 0\).
Case 1: \(\sin(2\theta) = 0\)
\[2\theta = n\pi\]
\[\theta = \frac{n\pi}{2}\]
Since \(0<\theta<\pi\), we have \(0<\frac{n\pi}{2}<\pi\), so \(0<n<2\).
Thus, \(n = 1\), and \(\theta = \frac{\pi}{2}\).
Case 2: \(\cos(5\theta) - \cos(2\theta) = 0\)
\[\cos(5\theta) = \cos(2\theta)\]
\[5\theta = 2n\pi \pm 2\theta\]
Subcase 2.1: \(5\theta = 2n\pi + 2\theta\)
\[3\theta = 2n\pi\]
\[\theta = \frac{2n\pi}{3}\]
Since \(0<\theta<\pi\), we have \(0<\frac{2n\pi}{3}<\pi\), so \(0<2n<3\), which means \(0<n<\frac{3}{2}\).
Thus, \(n = 1\), and \(\theta = \frac{2\pi}{3}\).
Subcase 2.2: \(5\theta = 2n\pi - 2\theta\)
\[7\theta = 2n\pi\]
\[\theta = \frac{2n\pi}{7}\]
Since \(0<\theta<\pi\), we have \(0<\frac{2n\pi}{7}<\pi\), so \(0<2n<7\), which means \(0<n<\frac{7}{2}\).
Thus, \(n = 1, 2, 3\), and \(\theta = \frac{2\pi}{7}, \frac{4\pi}{7}, \frac{6\pi}{7}\).
The solutions are \(\frac{\pi}{2}, \frac{2\pi}{3}, \frac{2\pi}{7}, \frac{4\pi}{7}, \frac{6\pi}{7}\).
There are 5 solutions in the interval \((0, \pi)\).
Final Answer: The final answer is $\boxed{(4)}$