Given equation:
\[ 4\sin^2 x - 4\cos^3 x + 9 - 4\cos x = 0 \]
We use the identity:
\[ \sin^2 x = 1 - \cos^2 x \]
Substituting this in the equation:
\[ 4(1 - \cos^2 x) - 4\cos^3 x + 9 - 4\cos x = 0 \]
Simplifying:
\[ 4 - 4\cos^2 x - 4\cos^3 x + 9 - 4\cos x = 0 \]
Combining like terms:
\[ 13 - 4\cos^3 x - 4\cos^2 x - 4\cos x = 0 \]
Factoring out \(-4\):
\[ -4(\cos^3 x + \cos^2 x + \cos x - \frac{13}{4}) = 0 \]
Therefore, we need to solve:
\[ \cos^3 x + \cos^2 x + \cos x - \frac{13}{4} = 0 \]
After analyzing the roots of this equation within the interval \( x \in [-2\pi, 2\pi] \), we observe there are no real solutions that satisfy the equation.
Conclusion: The number of solutions is 0.
The given graph illustrates:
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).