Given:
\[\text{Power (P)} = V \cdot I\]
\[110 = 220 \times I\]
\[I = 0.5 \, \text{A}\]
Now, we know:
\[I = \frac{n \cdot e}{t}\]
Substitute the values:
\[0.5 = \frac{n \times (1.6 \times 10^{-19})}{t}\]
Rearrange to solve for \( n \):
\[\frac{n}{t} = \frac{0.5}{1.6 \times 10^{-19}}\]
\[\frac{n}{t} = 31.25 \times 10^{17}\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: