The given equation involves absolute value expressions.
We solve it by considering different intervals based on the critical points
\[
x = -4 \quad \text{and} \quad x = -2.
\]
Step 1: Case I — \( x \ge -2 \).
For \( x \ge -2 \),
\[
|x + 4| = x + 4,\quad |x + 2| = x + 2.
\]
Substituting,
\[
x(x + 4) + 3(x + 2) + 10 = 0.
\]
\[
x^2 + 4x + 3x + 6 + 10 = 0
\Rightarrow x^2 + 7x + 16 = 0.
\]
Discriminant:
\[
\Delta = 49 - 64 = -15<0.
\]
So, no real solution in this interval.
Step 2: Case II — \( -4 \le x<-2 \).
For \( -4 \le x<-2 \),
\[
|x + 4| = x + 4,\quad |x + 2| = -(x + 2).
\]
Substituting,
\[
x(x + 4) + 3(-x - 2) + 10 = 0.
\]
\[
x^2 + 4x - 3x - 6 + 10 = 0
\Rightarrow x^2 + x + 4 = 0.
\]
Discriminant:
\[
\Delta = 1 - 16 = -15<0.
\]
So, no real solution in this interval.
Step 3: Case III — \( x<-4 \).
For \( x<-4 \),
\[
|x + 4| = -(x + 4),\quad |x + 2| = -(x + 2).
\]
Substituting,
\[
x(-x - 4) + 3(-x - 2) + 10 = 0.
\]
\[
- x^2 - 4x - 3x - 6 + 10 = 0
\Rightarrow -x^2 - 7x + 4 = 0.
\]
Multiplying by \( -1 \),
\[
x^2 + 7x - 4 = 0.
\]
\[
x = \frac{-7 \pm \sqrt{49 + 16}}{2}
= \frac{-7 \pm \sqrt{65}}{2}.
\]
Both roots satisfy \( x<-4 \), hence both are valid.
Step 4: Count the solutions.
There are exactly two distinct real solutions.
Final Answer:
\[
\boxed{2}
\]