Step 1: Use modulus property.
Given
\[
z = \prod_{r=1}^{n} (1+ri)
\]
Taking modulus squared,
\[
|z|^2 = \prod_{r=1}^{n} |1+ri|^2
\]
Step 2: Evaluate $|1+ri|^2$.
\[
|1+ri|^2 = 1^2 + r^2 = 1+r^2
\]
Hence,
\[
|z|^2 = \prod_{r=1}^{n} (1+r^2)
\]
Step 3: Use the given value.
\[
\prod_{r=1}^{n} (1+r^2) = 44200
\]
Prime factorizing,
\[
44200 = 2^3 \times 5^2 \times 13 \times 17
\]
Step 4: Evaluate product term by term.
\[
(1+1^2)(1+2^2)(1+3^2)(1+4^2)(1+5^2)
\]
\[
= 2 \times 5 \times 10 \times 17 \times 26
\]
\[
= 44200
\]
Step 5: Final conclusion.
Hence, the value of $n$ is 5.