The number of 5-digit natural numbers, such that the product of their digits is 36, is _____ .
The correct answer is 180
Factors of 36 = 22⋅ 32⋅ 1
Five-digit combinations can be
(1, 2, 2, 3, 3) (1, 4, 3, 3, 1), (1, 9, 2, 2, 1)
(1, 4, 9, 11) (1, 2, 3, 6, 1) (1, 6, 6, 1, 1)
i.e., total numbers
\(\frac{5!}{2!2!} + \frac{5!}{2!2!} + \frac{5!}{2!2!} + \frac{5!}{3!} + \frac{5!}{2!} + \frac{5!}{3!2!}\)
= (30 × 3) + 20 + 60 + 10 = 180
The value of 49C3 + 48C3 + 47C3 + 46C3 + 45C3 + 45C4 is:
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
The method of forming subsets by selecting data from a larger set in a way that the selection order does not matter is called the combination.
But you are only allowed to pick three.
It is used for a group of data (where the order of data doesn’t matter).