The drift velocity (\( v_d \)) is given by: \[ I = n e A v_d, \] where:
\( I = 3.2 \, \text{A} \),
\( n = 8 \times 10^{28} \, \text{m}^{-3} \) (number density),
\( e = 1.6 \times 10^{-19} \, \text{C} \) (charge of an electron),
\( A = 2 \times 10^{-6} \, \text{m}^2 \) (cross-sectional area).
Rearrange to solve for \( v_d \): \[ v_d = \frac{I}{n e A}. \]
Substitute the values: \[ v_d = \frac{3.2}{(8 \times 10^{28}) (1.6 \times 10^{-19}) (2 \times 10^{-6})}. \]
Simplify: \[ v_d = \frac{3.2}{2.56 \times 10^4} = 125 \times 10^{-6} \, \text{ms}^{-1}. \]
Final Answer: The drift velocity is: \[ \boxed{125 \times 10^{-6} \, \text{ms}^{-1}}. \]
A solid sphere of radius \(4a\) units is placed with its centre at origin. Two charges \(-2q\) at \((-5a, 0)\) and \(5q\) at \((3a, 0)\) is placed. If the flux through the sphere is \(\frac{xq}{\in_0}\) , find \(x\)

Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to: