The modal class of the following table will be:
\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Class Interval} & 0\text{--}5 & 5\text{--}10 & 10\text{--}15 & 15\text{--}20 & 20\text{--}25 \\ \hline \text{Frequency} & 2 & 7 & 11 & 8 & 6 \\ \hline \end{array} \]
Step 1: Identify the highest frequency
Frequencies are $2,\,7,\,11,\,8,\,6$. The maximum is $11$.
Step 2: Choose the corresponding class
The class with frequency $11$ is $10$--$15$ $\Rightarrow$ this is the modal class.
\[
\boxed{\text{Modal class }=\,10\text{--}15}
\]
The modal class of the following table will be:
\[ \begin{array}{|c|c|} \hline \text{Class Interval} & \text{Frequency} \\ \hline 0-5 & 5 \\ \hline 5-10 & 8 \\ \hline 10-15 & 12 \\ \hline 15-20 & 10 \\ \hline 20-25 & 7 \\ \hline \end{array} \]
Lifetimes (in hours) | 0 - 20 | 20 - 40 | 40 - 60 | 60 - 80 | 80 - 100 | 100 - 120 |
---|---|---|---|---|---|---|
Frequency | 10 | 35 | 52 | 61 | 28 | 29 |
A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mode of the data :
Number of cars | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 -70 | 70 - 80 |
Frequency | 7 | 14 | 13 | 12 | 20 | 11 | 15 | 8 |
The following table shows the ages of tha year:
Age (in years) | 5 - 15 | 15 - 25 | 25 - 35 | 35 - 45 | 45 - 55 | 55 - 65 |
---|---|---|---|---|---|---|
Number of patients | 6 | 11 | 21 | 23 | 14 | 5 |
Find the mode and the mean of the data given above. Compare and interpret the two measures of central tendency.
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.