For the hydrogen atom, the transition from \(n = 1\) to \(n = 3\) gives the radiation in the Balmer series:
\[ \Delta E = 12.1 \, \text{eV} \]
Thus, the correct answer is Option (4).
An electron in the hydrogen atom initially in the fourth excited state makes a transition to \( n^{th} \) energy state by emitting a photon of energy 2.86 eV. The integer value of n will be 1cm.
Considering the Bohr model of hydrogen like atoms, the ratio of the radius $5^{\text {th }}$ orbit of the electron in $\mathrm{Li}^{2+}$ and $\mathrm{He}^{+}$is
Given below are the atomic masses of the elements:
Which of the following doesn't form triad?
During "S" estimation, 160 mg of an organic compound gives 466 mg of barium sulphate. The percentage of Sulphur in the given compound is %.
(Given molar mass in g mol\(^{-1}\) of Ba: 137, S: 32, O: 16)
If \(\int e^x \left( \frac{x \sin^{-1} x}{\sqrt{1-x^2}} + \frac{\sin^{-1} x}{(1-x^2)^{3/2}} + \frac{x}{1-x^2} \right) dx = g(x) + C\), where C is the constant of integration, then \(g\left( \frac{1}{2} \right)\)equals:
Consider the following sequence of reactions to produce major product (A):
The molar mass of the product (A) is g mol−1. (Given molar mass in g mol−1 of C: 12,
H: 1, O: 16, Br: 80, N: 14, P: 31)
If 1 mM solution of ethylamine produces pH = 9, then the ionization constant (\(K_b\)) of ethylamine is \(10^{-x}\).
The value of x is (nearest integer).
The degree of ionization of ethylamine can be neglected with respect to unity.
Which among the following react with Hinsberg's reagent?
Choose the correct answer from the options given below: