For the hydrogen atom, the transition from \(n = 1\) to \(n = 3\) gives the radiation in the Balmer series:
\[ \Delta E = 12.1 \, \text{eV} \]
Thus, the correct answer is Option (4).
An electron in the hydrogen atom initially in the fourth excited state makes a transition to \( n^{th} \) energy state by emitting a photon of energy 2.86 eV. The integer value of n will be 1cm.
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: