Considering the Bohr model of hydrogen like atoms, the ratio of the radius $5^{\text {th }}$ orbit of the electron in $\mathrm{Li}^{2+}$ and $\mathrm{He}^{+}$is
We are asked to find the ratio of the radius of the 5th orbit of an electron in \( \mathrm{Li}^{2+} \) and \( \mathrm{He}^{+} \) ions according to the Bohr model.
In the Bohr model, the radius of the \( n^{\text{th}} \) orbit for a hydrogen-like atom is given by:
\[ r_n = \frac{n^2 h^2 \varepsilon_0}{\pi m e^2 Z} = a_0 \frac{n^2}{Z} \]
where:
Step 1: Write the expression for the radius of the 5th orbit for both ions.
\[ r_{5,\mathrm{Li}^{2+}} = a_0 \frac{5^2}{Z_{\mathrm{Li}}} \] \[ r_{5,\mathrm{He}^{+}} = a_0 \frac{5^2}{Z_{\mathrm{He}}} \]
Step 2: Substitute the atomic numbers:
Step 3: Substitute into the formula and simplify.
\[ r_{5,\mathrm{Li}^{2+}} = a_0 \frac{25}{3} \] \[ r_{5,\mathrm{He}^{+}} = a_0 \frac{25}{2} \]
Step 4: Take the ratio.
\[ \frac{r_{5,\mathrm{Li}^{2+}}}{r_{5,\mathrm{He}^{+}}} = \frac{\frac{25}{3}}{\frac{25}{2}} = \frac{2}{3} \]
The ratio of the radii of the 5th orbit is:
\[ \boxed{\frac{r_{5,\mathrm{Li}^{2+}}}{r_{5,\mathrm{He}^{+}}} = \frac{2}{3}} \]
Final Answer: \( \dfrac{2}{3} \)

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
