To find the minimum work input, we use the Carnot refrigerator formula:
\[
\text{COP}_{\text{refrigerator}} = \frac{T_L}{T_H - T_L}
\]
Where:
$T_L = 0^\circ C = 273 \text{ K}$
$T_H = 50^\circ C = 323 \text{ K}$
Substitute the values:
\[
\text{COP} = \frac{273}{323 - 273} = \frac{273}{50} = 5.46
\]
The work input $W$ is related to the heat extracted $Q_L$ and COP as:
\[
W = \frac{Q_L}{\text{COP}} = \frac{1000}{5.46} \approx 183.15 \text{ Cal}
\]