To determine which metals are employed in the battery industries, we need to assess the given options. Batteries are commonly made using metals that provide good electron flow and stability. Let's examine the given options:
Analyzing these facts, the metals used in battery industries from the given options are Manganese (Mn), Nickel (Ni), and Cadmium (Cd).
Therefore, the correct answer is: B, C, and E only.
\( \text{Mn, Ni, and Cd metals are used in battery industries.} \)

Consider the above electrochemical cell where a metal electrode (M) is undergoing redox reaction by forming $M^+$ ($M \to M^+ + e^-$). The cation $M^+$ is present in two different concentrations $c_1$ and $c_2$ as shown above. Which of the following statement is correct for generating a positive cell potential?
MX is a sparingly soluble salt that follows the given solubility equilibrium at 298 K.
MX(s) $\rightleftharpoons M^{+(aq) }+ X^{-}(aq)$; $K_{sp} = 10^{-10}$
If the standard reduction potential for $M^{+}(aq) + e^{-} \rightarrow M(s)$ is $(E^{\circ}_{M^{+}/M}) = 0.79$ V, then the value of the standard reduction potential for the metal/metal insoluble salt electrode $E^{\circ}_{X^{-}/MX(s)/M}$ is ____________ mV. (nearest integer)
[Given : $\frac{2.303 RT}{F} = 0.059$ V]


A 1 m long metal rod AB completes the circuit as shown in figure. The area of circuit is perpendicular to the magnetic field of 0.10 T. If the resistance of the total circuit is 2 \(\Omega\) then the force needed to move the rod towards right with constant speed (v) of 1.5 m/s is _____ N.