The mean of the following table will be:
Class-interval | 0-2 | 2-4 | 4-6 | 6-8 | 8-10 |
---|---|---|---|---|---|
Frequency (f) | 3 | 1 | 5 | 4 | 7 |
The formula to find the midpoint is:
\[ \text{Midpoint} = \frac{\text{Upper limit} + \text{Lower limit}}{2} \]
Class Interval | Frequency (f) | Midpoint (x) |
---|---|---|
0-2 | 3 | 1 |
2-4 | 1 | 3 |
4-6 | 5 | 5 |
6-8 | 4 | 7 |
8-10 | 7 | 9 |
The table for \( f \times x \) is as follows:
Class Interval | f | f × x |
---|---|---|
0-2 | 3 | 3 |
2-4 | 1 | 3 |
4-6 | 5 | 25 |
6-8 | 4 | 28 |
8-10 | 7 | 63 |
Total | Σf = 20 | Σf x = 122 |
The formula to calculate the mean is:
\[ \bar{x} = \frac{\Sigma f x}{\Sigma f} = \frac{122}{20} = 6.1 \]
The mean of the given frequency distribution is 6.1.
The coefficient of correlation of the above two data series will be equal to \(\underline{\hspace{1cm}}\)
\[\begin{array}{|c|c|} \hline X & Y \\ \hline -3 & 9 \\ -2 & 4 \\ -1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ \hline \end{array}\]
Identify the median class for the following grouped data:
\[\begin{array}{|c|c|} \hline \textbf{Class interval} & \textbf{Frequency} \\ \hline 5-10 & 5 \\ 10-15 & 15 \\ 15-20 & 22 \\ 20-25 & 25 \\ 25-30 & 10 \\ 30-35 & 3 \\ \hline \end{array}\]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.