Step 1: Define the parameters and hypotheses. This is a two-sample test for proportions. Let \(p_A\) and \(p_B\) be the true error proportions for Team A and Team B. - Sample proportion for A: \( \hat{p}_A = \frac{250}{1000} = 0.25 \) with \( n_A = 1000 \). - Sample proportion for B: \( \hat{p}_B = \frac{300}{800} = 0.375 \) with \( n_B = 800 \). The hypothesis is to test if Team A performed better, meaning they have a lower error rate. So, \( H_1: p_A < p_B \) and \( H_0: p_A \ge p_B \).
Step 2: Calculate the pooled proportion (\(\hat{p}\)). Under \(H_0\), we assume the proportions are equal. We estimate this common proportion by pooling the data. \[ \hat{p} = \frac{\text{Total Errors}}{\text{Total Lines}} = \frac{250+300}{1000+800} = \frac{550}{1800} = \frac{11}{36} \]
Step 3: State the formula for the test statistic (Z). \[ Z = \frac{(\hat{p}_A - \hat{p}_B)}{\sqrt{\hat{p}(1-\hat{p})(\frac{1}{n_A} + \frac{1}{n_B})}} \]
Step 4: Calculate the values and the final test statistic. - Numerator: \( \hat{p}_A - \hat{p}_B = 0.25 - 0.375 = -0.125 \). - Pooled proportion: \( \hat{p} = 11/36 \approx 0.3056 \). So, \( 1-\hat{p} = 25/36 \approx 0.6944 \). - Denominator: \[ \sqrt{\frac{11}{36} \cdot \frac{25}{36} \left(\frac{1}{1000} + \frac{1}{800}\right)} = \sqrt{\frac{275}{1296} \left(\frac{1}{1000} + \frac{1.25}{1000}\right)} \] \[ = \sqrt{0.2122 (0.00225)} = \sqrt{0.00047745} \approx 0.02185 \] - Test Statistic Z: \[ Z = \frac{-0.125}{0.02185} \approx -5.7208 \]
The coefficient of correlation of the above two data series will be equal to \(\underline{\hspace{1cm}}\)
\[\begin{array}{|c|c|} \hline X & Y \\ \hline -3 & 9 \\ -2 & 4 \\ -1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ \hline \end{array}\]
Identify the median class for the following grouped data:
\[\begin{array}{|c|c|} \hline \textbf{Class interval} & \textbf{Frequency} \\ \hline 5-10 & 5 \\ 10-15 & 15 \\ 15-20 & 22 \\ 20-25 & 25 \\ 25-30 & 10 \\ 30-35 & 3 \\ \hline \end{array}\]
Match the LIST-I (Spectroscopy) with LIST-II (Application)
LIST-I | LIST-II |
---|---|
A. Visible light spectroscopy | III. Identification on the basis of color |
B. Fluorescence spectroscopy | IV. Identification on the basis of fluorophore present |
C. FTIR spectroscopy | I. Identification on the basis of absorption in infrared region |
D. Mass Spectroscopy | II. Identification on the basis of m/z ion |
Match the LIST-I with LIST-II
LIST-I | LIST-II |
---|---|
A. Forensic Psychiatry | III. Behavioural pattern of criminal |
B. Forensic Engineering | IV. Origin of metallic fracture |
C. Forensic Odontology | I. Bite marks analysis |
D. Computer Forensics | II. Information derived from digital devices |
Match the LIST-I with LIST-II
LIST-I | LIST-II |
---|---|
A. Calvin Goddard | II. Forensic Ballistics |
B. Karl Landsteiner | III. Blood Grouping |
C. Albert Osborn | IV. Document examination |
D. Mathieu Orfila | I. Forensic Toxicology |
Match the LIST-I (Evidence, etc.) with LIST-II (Example, Construction etc.)
LIST-I | LIST-II |
---|---|
A. Biological evidence | IV. Blood |
B. Latent print evidence | III. Fingerprints |
C. Trace evidence | II. Soil |
D. Digital evidence | I. Cell phone records |
Match the LIST-I with LIST-II
LIST-I | LIST-II |
---|---|
A. Ridges | III. The raised portion of the friction skin of the fingers |
B. Type Lines | I. Two most inner ridges which start parallel, diverge and surround or tend to surround the pattern area |
C. Delta | IV. The ridge characteristics nearest to the point of divergence of type lines |
D. Enclosure | II. A single ridge bifurcates and reunites to enclose some space |