Step 1: Compute the first derivative \( y' \)
The derivative of the given function:
\[
y = x^4 + 5x^3 + 9x^2 + 6x + 2
\]
\[
y' = \frac{d}{dx} (x^4 + 5x^3 + 9x^2 + 6x + 2).
\]
\[
= 4x^3 + 15x^2 + 18x + 6.
\]
Step 2: Compute the second derivative \( y'' \)
\[
y'' = \frac{d}{dx} (4x^3 + 15x^2 + 18x + 6).
\]
\[
= 12x^2 + 30x + 18.
\]
Step 3: Find the critical points for concavity change
To find where the slope of the tangent is increasing, solve:
\[
y'' = 0.
\]
\[
12x^2 + 30x + 18 = 0.
\]
Dividing by 6:
\[
2x^2 + 5x + 3 = 0.
\]
Factorizing:
\[
(2x + 3)(x + 1) = 0.
\]
Solving for \( x \):
\[
x = -\frac{3}{2}, \quad x = -1.
\]
Step 4: Determine the intervals where \( y' \) is increasing
Using a sign test on \( y'' \):
- For \( x<-\frac{3}{2} \), \( y''>0 \) (increasing).
- For \( -\frac{3}{2}<x<-1 \), \( y''<0 \) (decreasing).
- For \( x>-1 \), \( y''>0 \) (increasing).
Thus, \( y' \) is increasing outside \( \left[ -\frac{3}{2}, -1 \right] \).
Step 5: Conclusion
Thus, the correct answer is:
\[
\mathbf{R - \left[ -\frac{3}{2}, -1 \right].}
\]
\bigskip