The maximum height of a projectile is given by:
\[ H_{\text{max}} = \frac{u^2 \sin^2 \theta}{2g}, \]
where:
- \( u \) is the initial velocity,
- \( \theta \) is the angle of projection,
- \( g \) is the acceleration due to gravity.
Step 1: Relationship between maximum heights
If the initial velocity is halved, i.e., \( u' = \frac{u}{2} \), the new maximum height \( H_{2\text{max}} \) can be expressed as:
\[ \frac{H_{1\text{max}}}{H_{2\text{max}}} = \frac{u^2}{u'^2}. \]
Substitute \( u' = \frac{u}{2} \):
\[ \frac{H_{1\text{max}}}{H_{2\text{max}}} = \frac{u^2}{\left( \frac{u}{2} \right)^2}. \]
Step 2: Simplify the expression
Simplify \( \left( \frac{u}{2} \right)^2 \):
\[ \frac{H_{1\text{max}}}{H_{2\text{max}}} = \frac{u^2}{\frac{u^2}{4}} = 4. \]
Thus:
\[ H_{2\text{max}} = \frac{H_{1\text{max}}}{4}. \]
Step 3: Calculate the new maximum height
Substitute \( H_{1\text{max}} = 64 \, \text{m} \):
\[ H_{2\text{max}} = \frac{64}{4} = 16 \, \text{m}. \]
Therefore, the new maximum height of the projectile is \( H_{2\text{max}} = 16 \, \text{m} \).
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to