The maximum height of a projectile is given by:
\[ H_{\text{max}} = \frac{u^2 \sin^2 \theta}{2g}, \]
where:
- \( u \) is the initial velocity,
- \( \theta \) is the angle of projection,
- \( g \) is the acceleration due to gravity.
Step 1: Relationship between maximum heights
If the initial velocity is halved, i.e., \( u' = \frac{u}{2} \), the new maximum height \( H_{2\text{max}} \) can be expressed as:
\[ \frac{H_{1\text{max}}}{H_{2\text{max}}} = \frac{u^2}{u'^2}. \]
Substitute \( u' = \frac{u}{2} \):
\[ \frac{H_{1\text{max}}}{H_{2\text{max}}} = \frac{u^2}{\left( \frac{u}{2} \right)^2}. \]
Step 2: Simplify the expression
Simplify \( \left( \frac{u}{2} \right)^2 \):
\[ \frac{H_{1\text{max}}}{H_{2\text{max}}} = \frac{u^2}{\frac{u^2}{4}} = 4. \]
Thus:
\[ H_{2\text{max}} = \frac{H_{1\text{max}}}{4}. \]
Step 3: Calculate the new maximum height
Substitute \( H_{1\text{max}} = 64 \, \text{m} \):
\[ H_{2\text{max}} = \frac{64}{4} = 16 \, \text{m}. \]
Therefore, the new maximum height of the projectile is \( H_{2\text{max}} = 16 \, \text{m} \).
A particle is projected at an angle of \( 30^\circ \) from horizontal at a speed of 60 m/s. The height traversed by the particle in the first second is \( h_0 \) and height traversed in the last second, before it reaches the maximum height, is \( h_1 \). The ratio \( \frac{h_0}{h_1} \) is __________. [Take \( g = 10 \, \text{m/s}^2 \)]