The maximum height of a projectile is given by:
\[ H_{\text{max}} = \frac{u^2 \sin^2 \theta}{2g}, \]
where:
- \( u \) is the initial velocity,
- \( \theta \) is the angle of projection,
- \( g \) is the acceleration due to gravity.
Step 1: Relationship between maximum heights
If the initial velocity is halved, i.e., \( u' = \frac{u}{2} \), the new maximum height \( H_{2\text{max}} \) can be expressed as:
\[ \frac{H_{1\text{max}}}{H_{2\text{max}}} = \frac{u^2}{u'^2}. \]
Substitute \( u' = \frac{u}{2} \):
\[ \frac{H_{1\text{max}}}{H_{2\text{max}}} = \frac{u^2}{\left( \frac{u}{2} \right)^2}. \]
Step 2: Simplify the expression
Simplify \( \left( \frac{u}{2} \right)^2 \):
\[ \frac{H_{1\text{max}}}{H_{2\text{max}}} = \frac{u^2}{\frac{u^2}{4}} = 4. \]
Thus:
\[ H_{2\text{max}} = \frac{H_{1\text{max}}}{4}. \]
Step 3: Calculate the new maximum height
Substitute \( H_{1\text{max}} = 64 \, \text{m} \):
\[ H_{2\text{max}} = \frac{64}{4} = 16 \, \text{m}. \]
Therefore, the new maximum height of the projectile is \( H_{2\text{max}} = 16 \, \text{m} \).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).