The reaction for the deposition of zinc is as follows:
Zn2+ + 2e- → Zn
Using the formula for electrolysis:
W = \( \frac{Z \times i \times t}{F} \)
where
Calculating the mass of zinc:
W = \( \frac{65.4}{2 \times 96500} \times 0.015 \times 15 \times 60 \)
W = 45.75 $\times$ 10-4 g
Since the answer can be approximated, we also consider 46 $\times$ 10-4 g.
So, the correct answer is: 45.75 or 46
On charging the lead storage battery, the oxidation state of lead changes from $\mathrm{x}_{1}$ to $\mathrm{y}_{1}$ at the anode and from $\mathrm{x}_{2}$ to $\mathrm{y}_{2}$ at the cathode. The values of $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}$ are respectively:
Match List-I with List-II: List-I