The reaction for the deposition of zinc is as follows:
Zn2+ + 2e- → Zn
Using the formula for electrolysis:
W = \( \frac{Z \times i \times t}{F} \)
where
Calculating the mass of zinc:
W = \( \frac{65.4}{2 \times 96500} \times 0.015 \times 15 \times 60 \)
W = 45.75 $\times$ 10-4 g
Since the answer can be approximated, we also consider 46 $\times$ 10-4 g.
So, the correct answer is: 45.75 or 46
Step 1: Use Faraday’s law of electrolysis.
According to Faraday’s first law: \[ m = \frac{E \, I \, t}{F} \] where \( m \) = mass of substance deposited (in g), \( E \) = equivalent weight of substance, \( I \) = current (A), \( t \) = time (s), \( F \) = Faraday’s constant \( = 96500\,\text{C/mol} \).
For Zn²⁺ + 2e⁻ → Zn, number of electrons \( n = 2 \). \[ E = \frac{\text{Atomic mass}}{n} = \frac{65.4}{2} = 32.7 \]
\[ I = 0.015\,\text{A}, \quad t = 15\,\text{min} = 15 \times 60 = 900\,\text{s} \] \[ m = \frac{32.7 \times 0.015 \times 900}{96500} \]
\[ m = \frac{32.7 \times 13.5}{96500} = \frac{441.45}{96500} = 0.00457\,\text{g} \] \[ m = 4.575 \times 10^{-3}\,\text{g} = 45.75 \times 10^{-4}\,\text{g} \]
\[ \boxed{45.75 \times 10^{-4}\,\text{g}} \]
The molar conductance of an infinitely dilute solution of ammonium chloride was found to be 185 S cm$^{-1}$ mol$^{-1}$ and the ionic conductance of hydroxyl and chloride ions are 170 and 70 S cm$^{-1}$ mol$^{-1}$, respectively. If molar conductance of 0.02 M solution of ammonium hydroxide is 85.5 S cm$^{-1}$ mol$^{-1}$, its degree of dissociation is given by x $\times$ 10$^{-1}$. The value of x is ______. (Nearest integer)
Consider the following half cell reaction $ \text{Cr}_2\text{O}_7^{2-} (\text{aq}) + 6\text{e}^- + 14\text{H}^+ (\text{aq}) \longrightarrow 2\text{Cr}^{3+} (\text{aq}) + 7\text{H}_2\text{O}(1) $
The reaction was conducted with the ratio of $\frac{[\text{Cr}^{3+}]^2}{[\text{Cr}_2\text{O}_7^{2-}]} = 10^{-6}$
The pH value at which the EMF of the half cell will become zero is ____ (nearest integer value)
[Given : standard half cell reduction potential $\text{E}^\circ_{\text{Cr}_2\text{O}_7^{2-}, \text{H}^+/\text{Cr}^{3+}} = 1.33\text{V}, \quad \frac{2.303\text{RT}}{\text{F}} = 0.059\text{V}$
| Concentration of KCl solution (mol/L) | Conductivity at 298.15 K (S cm-1) | Molar Conductivity at 298.15 K (S cm2 mol-1) |
|---|---|---|
| 1.000 | 0.1113 | 111.3 |
| 0.100 | 0.0129 | 129.0 |
| 0.010 | 0.00141 | 141.0 |
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:
