Cell Reaction: \( 2\text{Al} + 3\text{Ni}^{2+} \rightarrow 2\text{Al}^{3+} + 3\text{Ni} \)
Cell potential calculation:
\( E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} = -0.25 - (-1.66) = 1.41 \, \text{V} \)
Using Nernst Equation:
\( E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.0591}{n} \log \left( \frac{[\text{Al}^{3+}]^2}{[\text{Ni}^{2+}]^3} \right) \)
Given:
\( n = 6 \)
\( E_{\text{cell}} = 1.41 - \frac{0.0591}{6} \log \left( \frac{(0.002)^2}{(0.002)^3} \right) \)
\( = 1.41 - \frac{0.0591}{6} \log(0.002) \)
\( = 1.41 - \frac{0.0591}{6} \cdot (-2.699) \)
\( = 1.41 + 0.0266 \)
\( = 1.4366 \, \text{V} \) (approx)
Standard electrode potential for \( \text{Sn}^{4+}/\text{Sn}^{2+} \) couple is +0.15 V and that for the \( \text{Cr}^{3+}/\text{Cr} \) couple is -0.74 V. The two couples in their standard states are connected to make a cell. The cell potential will be:
To calculate the cell potential (\( E^\circ_{\text{cell}} \)), we use the standard electrode potentials of the given redox couples.
Given data:
\( E^\circ_{\text{Sn}^{4+}/\text{Sn}^{2+}} = +0.15V \)
\( E^\circ_{\text{Cr}^{3+}/\text{Cr}} = -0.74V \)