First Calculate the moles using the formula:
Moles = Molarity × Volume in litres
Moles\(= 0.35 × 0.25=0.0875 mol\)
Now Calculate the mass of sodium acetate:
Mass = moles × molar mass
Mass\(= 0.35 × 0.25 × 82.02 = 7.18 g≈ 7 g\)
0.1 mole of compound S will weigh ...... g, (given the molar mass in g mol\(^{-1}\) C = 12, H = 1, O = 16)
The molar mass of the water insoluble product formed from the fusion of chromite ore \(FeCr_2\text{O}_4\) with \(Na_2\text{CO}_3\) in presence of \(O_2\) is ....... g mol\(^{-1}\):
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32