The radius \( R \) of a nucleus is proportional to the cube root of its mass number \( A \):
\[ R \propto A^{1/3}. \]Let \( R_1 \) and \( R_2 \) be the radii of two nuclei with mass numbers \( A_1 \) and \( A_2 \), respectively. Given:
\[ R_1 = \frac{1}{2} R_2 \quad \text{and} \quad A_2 = 192. \]Using the proportionality,
\[ \frac{R_1}{R_2} = \left( \frac{A_1}{A_2} \right)^{1/3}. \]Substitute \( R_1 = \frac{1}{2} R_2 \):
\[ \frac{1}{2} = \left( \frac{A_1}{192} \right)^{1/3}. \]Cubing both sides:
\[ \frac{1}{8} = \frac{A_1}{192}. \]Solving for \( A_1 \):
\[ A_1 = 192 \times \frac{1}{8} = 24. \]Thus, the answer is:
\[ 24. \]Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: