Step 1: \(\mathrm{H_2O}\) is a weak-field ligand, so octahedral complexes are high-spin. Compute CFSE using
\[
\text{CFSE} = (-0.4\Delta_o)\,n_{t_{2g}} + (0.6\Delta_o)\,n_{e_g}.
\]
Step 2: Determine \(d^n\) counts and high-spin configurations.
\[
\begin{aligned}
\mathrm{Mn}^{2+}:&\ d^5 \Rightarrow t_{2g}^3e_g^2 \ \Rightarrow \ \text{CFSE}=3(-0.4)+2(0.6)=0,
\mathrm{Mn}^{3+}:&\ d^4 \Rightarrow t_{2g}^3e_g^1 \ \Rightarrow \ \text{CFSE}=3(-0.4)+1(0.6)=-0.6\Delta_o,
\mathrm{Fe}^{2+}:&\ d^6 \Rightarrow t_{2g}^4e_g^2 \ \Rightarrow \ \text{CFSE}=4(-0.4)+2(0.6)=-0.4\Delta_o,
\mathrm{Fe}^{3+}:&\ d^5 \Rightarrow t_{2g}^3e_g^2 \ \Rightarrow \ \text{CFSE}=0.
\end{aligned}
\]
Step 3: Compare magnitudes. \(|\text{CFSE}|\) values: \(\mathrm{Mn}^{2+}=0\), \(\mathrm{Mn}^{3+}=0.6\Delta_o\), \(\mathrm{Fe}^{2+}=0.4\Delta_o\), \(\mathrm{Fe}^{3+}=0\). Hence,
\[
\mathrm{Mn}^{2+}<\mathrm{Mn}^{3+} \quad \text{and} \quad \mathrm{Fe}^{2+}>\mathrm{Fe}^{3+}.
\]
Therefore, option (C) is correct.