R0 = L
$\frac{R\pi}{3}$ = L
R = $\frac{3L}{\pi}$
M' = m(2R) sin 30°
= m(2)$\frac{3L}{\pi}$ × $\frac{1}{2}$ = $\frac{3}{\pi}$mL = $\frac{3M}{\pi}$
(b) If \( \vec{L} \) is the angular momentum of the electron, show that:
\[ \vec{\mu} = -\frac{e}{2m} \vec{L} \]
The sum of the spin-only magnetic moment values (in B.M.) of $[\text{Mn}(\text{Br})_6]^{3-}$ and $[\text{Mn}(\text{CN})_6]^{3-}$ is ____.
The current passing through the battery in the given circuit, is:
A bob of heavy mass \(m\) is suspended by a light string of length \(l\). The bob is given a horizontal velocity \(v_0\) as shown in figure. If the string gets slack at some point P making an angle \( \theta \) from the horizontal, the ratio of the speed \(v\) of the bob at point P to its initial speed \(v_0\) is :
A full wave rectifier circuit with diodes (\(D_1\)) and (\(D_2\)) is shown in the figure. If input supply voltage \(V_{in} = 220 \sin(100 \pi t)\) volt, then at \(t = 15\) msec: