Match List-I with List-II and select the correct option.
Step 1: Analyze the given complexes and their coordination geometry
\([NiCl_4]^{2-}\) is a tetrahedral complex, typically exhibiting \(sp^3\) hybridization.
It also has a magnetic moment of 3.87 BM.
\([Ni(CN_4)]^{2-}\) is a square planar complex, usually exhibiting \(dsp^2\) hybridization.
It shows no unpaired electrons, so the magnetic moment is 0 BM.
\([CoCl_4]^{2-}\) is an octahedral complex, usually with \(sp^3d^2\) hybridization.
Its magnetic moment is 2.82 BM.
\([Ni(H_2O)_6]^{2+}\) is a tetrahedral complex, exhibiting \(sp^3\) hybridization and a magnetic moment of 2.82 BM.
Step 2: Match the complexes with their characteristics
A.
\([NiCl_4]^{2-}\) matches with IV.
\(sp^3\), tetrahedral, 3.87 BM.
B.
\([Ni(CN_4)]^{2-}\) matches with II.
\(dsp^2\), square planar, 0 BM.
C.
\([CoCl_4]^{2-}\) matches with I.
\(sp^3d^2\), octahedral, 2.82 BM.
D.
\([Ni(H_2O)_6]^{2+}\) matches with III.
\(sp^3\), tetrahedral, 2.82 BM.
The sum of the spin-only magnetic moment values (in B.M.) of $[\text{Mn}(\text{Br})_6]^{3-}$ and $[\text{Mn}(\text{CN})_6]^{3-}$ is ____.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 