Step 1: Understanding Supervised Learning
Supervised learning involves training a model on labeled data, where the model learns to map input features to target labels.
Step 2: Evaluating the Options
- Support vector machine (SVM): Correct, SVM is a supervised learning algorithm used for classification and regression tasks.
- K-mean clustering: Incorrect, K-means is an unsupervised learning algorithm used for clustering.
- Principal Component analysis (PCA): Incorrect, PCA is an unsupervised dimensionality reduction technique.
- Independent Component analysis (ICA): Incorrect, ICA is an unsupervised technique used for separating mixed signals.
Step 3: Conclusion
Support vector machine is a supervised learning model.
List I: Fermentation Products | List II: Strain used | ||
A | Mast cells | I | Clostridium tetani |
B | Lymphocytes | II | Brevibacterium sp. |
C | T-cells | III | Leuconostac mesenteroids |
D | Monocytes- Macrophages | IV | Bacillus subtillis |
V | Streptomyces olivaceus |
Jobs are stagnant from the past few years. Unemployment is a sheer waste of manpower. Corruption, bribery and __________ favour the undeserving job seekers.
Surveillance cameras are __________ these days. These cameras have obvious benefits.