For the longest wavelength in the Paschen series:
\[\frac{1}{\lambda} = R \left[ \frac{1}{n_1^2} - \frac{1}{n_2^2} \right]\]
For the longest wavelength, \( n_1 = 3 \) and \( n_2 = 4 \).
\[\frac{1}{\lambda} = R \left[ \frac{1}{3^2} - \frac{1}{4^2} \right]\]
\[\frac{1}{\lambda} = R \left[ \frac{1}{9} - \frac{1}{16} \right]\]
\[\frac{1}{\lambda} = R \cdot \frac{16 - 9}{144} = R \cdot \frac{7}{144}\]
Now, substitute \( R = 1.097 \times 10^7 \):
\[\frac{1}{\lambda} = \frac{7 \times 1.097 \times 10^7}{144}\]
\[\lambda = \frac{144}{7 \times 1.097 \times 10^7} = 1.876 \times 10^{-6} \, \text{m}\]
Given below are two statements:
Statement (I): A spectral line will be observed for a \(2p_x \rightarrow 2p_y\) transition.
Statement (II): \(2p_x\) and \(2p_y\) are degenerate orbitals.
In the light of the above statements, choose the correct answer from the options given below:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: