For the longest wavelength in the Paschen series:
\[\frac{1}{\lambda} = R \left[ \frac{1}{n_1^2} - \frac{1}{n_2^2} \right]\]
For the longest wavelength, \( n_1 = 3 \) and \( n_2 = 4 \).
\[\frac{1}{\lambda} = R \left[ \frac{1}{3^2} - \frac{1}{4^2} \right]\]
\[\frac{1}{\lambda} = R \left[ \frac{1}{9} - \frac{1}{16} \right]\]
\[\frac{1}{\lambda} = R \cdot \frac{16 - 9}{144} = R \cdot \frac{7}{144}\]
Now, substitute \( R = 1.097 \times 10^7 \):
\[\frac{1}{\lambda} = \frac{7 \times 1.097 \times 10^7}{144}\]
\[\lambda = \frac{144}{7 \times 1.097 \times 10^7} = 1.876 \times 10^{-6} \, \text{m}\]
Given below are two statements:
Statement (I): A spectral line will be observed for a \(2p_x \rightarrow 2p_y\) transition.
Statement (II): \(2p_x\) and \(2p_y\) are degenerate orbitals.
In the light of the above statements, choose the correct answer from the options given below:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).