Step 1: Use the formula for frequency of transition in hydrogen atom: \[ \nu = Rc \left( \dfrac{1}{n_1^2} - \dfrac{1}{n_2^2} \right) \] Step 2: Paschen series has transitions ending at \( n_1 = 3 \).
- First Paschen line: \( n_2 = 4 \rightarrow n_1 = 3 \)
- Second Paschen line: \( n_2 = 5 \rightarrow n_1 = 3 \)
Step 3: Calculate the frequencies. \[ \nu_1 = Rc \left( \dfrac{1}{3^2} - \dfrac{1}{4^2} \right) = Rc \left( \dfrac{1}{9} - \dfrac{1}{16} \right) = Rc \left( \dfrac{16 - 9}{144} \right) = \dfrac{7Rc}{144} \] \[ \nu_2 = Rc \left( \dfrac{1}{3^2} - \dfrac{1}{5^2} \right) = Rc \left( \dfrac{1}{9} - \dfrac{1}{25} \right) = Rc \left( \dfrac{25 - 9}{225} \right) = \dfrac{16Rc}{225} \] Step 4: Frequency difference: \[ \Delta \nu = \nu_1 - \nu_2 = \dfrac{7Rc}{144} - \dfrac{16Rc}{225} \] Find LCM of 144 and 225 = 3600, so: \[ \Delta \nu = \dfrac{175Rc}{3600} - \dfrac{256Rc}{3600} = \dfrac{-81Rc}{3600} \] We take magnitude (positive value): \[ |\Delta \nu| = \dfrac{81Rc}{3600} = \dfrac{9Rc}{400} \] Step 5: Select the correct option.
The frequency difference is \( \dfrac{9Rc}{400} \), which matches option (3).
Given below are two statements:
Statement (I): A spectral line will be observed for a \(2p_x \rightarrow 2p_y\) transition.
Statement (II): \(2p_x\) and \(2p_y\) are degenerate orbitals.
In the light of the above statements, choose the correct answer from the options given below:
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for: