The circuit diagram represents a NAND gate. Let’s analyze the behavior of the circuit:
This behavior matches the truth table of a NAND gate:
\[ \begin{array}{|c|c|c|} \hline A & B & Y = \overline{A \cdot B} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \]
Thus, the circuit corresponds to the logic of a NAND gate, with the output given by:
\[ Y = \overline{A \cdot B} \]
The correct answer is (B) : NAND
The output (Y) of the given logic implementation is similar to the output of an/a …………. gate.
The logic gate equivalent to the circuit given in the figure is
The logic gate equivalent to the combination of logic gates shown in the figure is
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
It is the gate, where a circuit performs an AND operation. It has n number of input where (n >= 2) and one output.
It is the gate, where a circuit performs an OR operation. It has n number of input where (n >= 2) and one output.
An inverter is also called NOT Gate. It has one input and one output where the input is A and the output is Y.
A NAND operation is also called a NOT-AND operation. It has n number of input where (n >= 2) and one output.
A NOR operation is also called a NOT-OR operation. It has n number of input where (n >= 2) and one output.
XOR or Ex-OR gate is a specific type of gate that can be used in the half adder, full adder, and subtractor.
XNOR gate is a specific type of gate, which can be used in the half adder, full adder, and subtractor. The exclusive-NOR gate is flattened as an EX-NOR gate or sometimes as an X-NOR gate. It has n number of input (n >= 2) and one output.