Let \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2 x}{1+5^x} \, dx \). Then:
\[ \int_0^{\frac{\pi}{4}} (\tan^3 x + \tan^5 x) \, dx \]
For \(1 \leq x<\infty\), let \(f(x) = \sin^{-1}\left(\frac{1}{x}\right) + \cos^{-1}\left(\frac{1}{x}\right)\). Then \(f'(x) =\)
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
The point where the line or curve crosses the axis of the graph is called intercept. If a point crosses the x-axis, then it is called the x-intercept. If a point crosses the y-axis, then it is called the y-intercept.
The meaning of intercept of a line is the point at which it intersects either the x-axis or y-axis.
The x-intercept represents where the graph crosses the x-axis. The x-intercept of a line gives the idea about the point which crosses the x-axis.
The y-intercept represents where the graph crosses the y-axis. The y-intercept is a point at which the line crosses the y-axis.
The x-intercept of a line is the point at which the line crosses the x axis. ( i.e. where the y value equals 0 )
X - intercept = (x, 0)
The y-intercept of a line is the point at which the line crosses the y axis. ( i.e. where the x value equals 0 )
Y - intercept = (0, y)