Given the ellipse:
\(\frac{x^2}{25} + \frac{y^2}{16} = 1\) and a chord with midpoint \(\left( 1, \frac{25}{8} \right)\).
Step 1. Equation of the Chord: The chord equation is:
\(\frac{x}{25} + \frac{y}{40} = 1 \Rightarrow y = \frac{200 - 8x}{5}\)
Step 2. Substitute into the Ellipse: Substituting \( y \) gives:
\(\frac{x^2}{25} + \frac{\left( \frac{200 - 8x}{5} \right)^2}{16} = 1\)
Simplifying:
\(2x^2 - 80x + 990 = 0 \Rightarrow x = 20 \pm \sqrt{10}\)
Step 3. Length of the Chord: Using the distance formula, the length is:
\(\text{Length} = \frac{\sqrt{1691}}{5}\)
Let \( F_1, F_2 \) \(\text{ be the foci of the hyperbola}\) \[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, a > 0, \, b > 0, \] and let \( O \) be the origin. Let \( M \) be an arbitrary point on curve \( C \) and above the X-axis and \( H \) be a point on \( MF_1 \) such that \( MF_2 \perp F_1 F_2, \, M F_1 \perp OH, \, |OH| = \lambda |O F_2| \) with \( \lambda \in (2/5, 3/5) \), then the range of the eccentricity \( e \) is in:
Let the line $\frac{x}{4} + \frac{y}{2} = 1$ meet the x-axis and y-axis at A and B, respectively. M is the midpoint of side AB, and M' is the image of the point M across the line $x + y = 1$. Let the point P lie on the line $x + y = 1$ such that $\Delta ABP$ is an isosceles triangle with $AP = BP$. Then the distance between M' and P is:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.