Given the ellipse:
\(\frac{x^2}{25} + \frac{y^2}{16} = 1\) and a chord with midpoint \(\left( 1, \frac{25}{8} \right)\).
Step 1. Equation of the Chord: The chord equation is:
\(\frac{x}{25} + \frac{y}{40} = 1 \Rightarrow y = \frac{200 - 8x}{5}\)
Step 2. Substitute into the Ellipse: Substituting \( y \) gives:
\(\frac{x^2}{25} + \frac{\left( \frac{200 - 8x}{5} \right)^2}{16} = 1\)
Simplifying:
\(2x^2 - 80x + 990 = 0 \Rightarrow x = 20 \pm \sqrt{10}\)
Step 3. Length of the Chord: Using the distance formula, the length is:
\(\text{Length} = \frac{\sqrt{1691}}{5}\)
If the four distinct points $ (4, 6) $, $ (-1, 5) $, $ (0, 0) $ and $ (k, 3k) $ lie on a circle of radius $ r $, then $ 10k + r^2 $ is equal to
The shortest distance between the curves $ y^2 = 8x $ and $ x^2 + y^2 + 12y + 35 = 0 $ is:
Let the equation $ x(x+2) * (12-k) = 2 $ have equal roots. The distance of the point $ \left(k, \frac{k}{2}\right) $ from the line $ 3x + 4y + 5 = 0 $ is
Match List-I with List-II: List-I