Given the ellipse:
\(\frac{x^2}{25} + \frac{y^2}{16} = 1\) and a chord with midpoint \(\left( 1, \frac{25}{8} \right)\).
Step 1. Equation of the Chord: The chord equation is:
\(\frac{x}{25} + \frac{y}{40} = 1 \Rightarrow y = \frac{200 - 8x}{5}\)
Step 2. Substitute into the Ellipse: Substituting \( y \) gives:
\(\frac{x^2}{25} + \frac{\left( \frac{200 - 8x}{5} \right)^2}{16} = 1\)
Simplifying:
\(2x^2 - 80x + 990 = 0 \Rightarrow x = 20 \pm \sqrt{10}\)
Step 3. Length of the Chord: Using the distance formula, the length is:
\(\text{Length} = \frac{\sqrt{1691}}{5}\)
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is