Given the ellipse:
\(\frac{x^2}{25} + \frac{y^2}{16} = 1\) and a chord with midpoint \(\left( 1, \frac{25}{8} \right)\).
Step 1. Equation of the Chord: The chord equation is:
\(\frac{x}{25} + \frac{y}{40} = 1 \Rightarrow y = \frac{200 - 8x}{5}\)
Step 2. Substitute into the Ellipse: Substituting \( y \) gives:
\(\frac{x^2}{25} + \frac{\left( \frac{200 - 8x}{5} \right)^2}{16} = 1\)
Simplifying:
\(2x^2 - 80x + 990 = 0 \Rightarrow x = 20 \pm \sqrt{10}\)
Step 3. Length of the Chord: Using the distance formula, the length is:
\(\text{Length} = \frac{\sqrt{1691}}{5}\)
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32