Chord of contact from $(x_1,y_1)$ to circle $S$:
\[
T = 0: xx_1 + yy_1 + g(x + x_1) + h(y + y_1) + c = 0
\]
From $S$: $g = 2$, $h = 1$, $c = 1$, and $(x_1, y_1) = (2,1)$:
\[
T: 2x + y + 4 + 2 + 1 = 0 \Rightarrow 2x + y + 3 = 0
\]
Distance from center $(-2, -1)$ to chord:
\[
d = \frac{|2(-2) + (-1) + 3|}{\sqrt{5}} = \frac{2}{\sqrt{5}}
\]
\[
R = \sqrt{g^2 + h^2 - c} = \sqrt{4 + 1 - 1} = 2
\]
Chord length = $2\sqrt{R^2 - d^2} = 2\sqrt{4 - \frac{4}{5}} = \frac{8}{\sqrt{5}}$