Let us consider a circle centered at point O.
AB is a tangent drawn on this circle from point A.
Given that,
OA = 5 cm and AB = 4 cm
In ΔABO,
OB ⊥ AB (Radius ⊥ tangent at the point of contact)
Applying Pythagoras theorem in ΔABO, we obtain
AB2 + BO2 = OA2
42 + BO2 = 52
16 + BO2 = 25
BO2 = 25-16
BO2 = 9
BO = 3
Hence, the radius of the circle is 3 cm.
Assertion (A): The sum of the first fifteen terms of the AP $ 21, 18, 15, 12, \dots $ is zero.
Reason (R): The sum of the first $ n $ terms of an AP with first term $ a $ and common difference $ d $ is given by: $ S_n = \frac{n}{2} \left[ a + (n - 1) d \right]. $
Assertion (A): The sum of the first fifteen terms of the AP $21, 18, 15, 12, \dots$ is zero.
Reason (R): The sum of the first $n$ terms of an AP with first term $a$ and common difference $d$ is given by: $S_n = \frac{n}{2} \left[ a + (n - 1) d \right].$