Question:

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Updated On: Jun 9, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

quadrilateral ABCD circumscribing a circle centered at O
Let ABCD be a quadrilateral circumscribing a circle centered at O such that it touches the circle at point P, Q, R, S. Let us join the vertices of the quadrilateral ABCD to the center of the circle.
Consider ΔOAP and ΔOAS,
AP = AS (Tangents from the same point)
OP = OS (Radii of the same circle)
OA = OA (Common side)
ΔOAP ≅ ΔOAS (SSS congruence criterion)
And thus, ∠POA = ∠AOS
∠1 = ∠8
Similarly,
∠2 = ∠3
∠4 = ∠5
6 = ∠7
∠1 + ∠2 + ∠3 + ∠4 + ∠5 + ∠6 + ∠7 + ∠8 = 360º
(∠1 + ∠8) + (∠2 + ∠3) + (∠4 + ∠5) + (∠6 + ∠7) = 360º
2∠1 + 2∠2 + 2∠5 + 2∠6 = 360º
2(∠1 + ∠2) + 2(∠5 + ∠6) = 360º
(∠1 + ∠2) + (∠5 + ∠6) = 180º
∠AOB + ∠COD = 180º
Similarly, we can prove that ∠BOC + ∠DOA = 180º
Hence, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
Was this answer helpful?
0
1