Let us consider a circle with centre O. Let AB be a tangent which touches the circle at P.
We have to prove that the line perpendicular to AB at P passes through centre O. We shall prove this by contradiction method.
Let us assume that the perpendicular to AB at P does not pass through centre O. Let it pass through another point O'. Join OP and O'P.
As perpendicular to AB at P passes through O', therefore,
∠O'PB = 90° …..... (1)
O is the centre of the circle and P is the point of contact. We know the line joining the centre and the point of contact to the tangent of the circle are perpendicular to each other.
∴ ∠OPB = 90° ……... (2)
Comparing equations (1) and (2), we obtain
∠O'PB = ∠OPB ……... (3)
From the figure, it can be observed that,
∠O'PB \(<\) ∠OPB …..... (4)
Thus, ∠O'PB = ∠OPB is not possible. It is only possible, when the line O'P coincides with OP.
Therefore, the perpendicular to AB through P passes through centre O.
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
निम्नलिखित विषय पर संकेत बिंदुओं के आधार पर लगभग 120 शब्दों में एक अनुच्छेद लिखिए |
डिजिटल इंडिया
संकेत बिंदु -
डिजिटल इंडिया क्या है
डिजिटल होने के लाभ
सरकार द्वारा उठाए गए कदम