The kinetic energy of an object is given by:
\[
KE = \frac{1}{2}mv^2
\]
Where \( m \) is the mass and \( v \) is the velocity.
Let the initial velocity be \( v_0 \) and the final velocity be \( v_0 + 1 \).
The kinetic energy at the initial velocity is:
\[
KE_1 = \frac{1}{2}mv_0^2
\]
The kinetic energy at the final velocity is:
\[
KE_2 = \frac{1}{2}m(v_0 + 1)^2
\]
We are given that the kinetic energy doubles, so:
\[
KE_2 = 2KE_1
\]
Substitute the expressions for \( KE_2 \) and \( KE_1 \):
\[
\frac{1}{2}m(v_0 + 1)^2 = 2 \times \frac{1}{2}mv_0^2
\]
Simplifying:
\[
(v_0 + 1)^2 = 2v_0^2
\]
Expanding both sides:
\[
v_0^2 + 2v_0 + 1 = 2v_0^2
\]
Simplifying:
\[
v_0^2 - 2v_0 - 1 = 0
\]
Solving this quadratic equation using the quadratic formula:
\[
v_0 = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-1)}}{2(1)} = \frac{2 \pm \sqrt{4 + 4}}{2} = \frac{2 \pm \sqrt{8}}{2} = \frac{2 \pm 2\sqrt{2}}{2}
\]
Thus:
\[
v_0 = 1 + \sqrt{2} \, \text{ms}^{-1}
\]
So the initial velocity of the car is \( \boxed{1 + \sqrt{2}} \, \text{ms}^{-1} \).