The kinetic energies of an electron (\(e\)) and a proton (\(p\)) are \(E\) and \(3E\), respectively. Given that the mass of a proton is 1836 times that of an electron, the ratio of their de Broglie wavelengths (\(\lambda_e / \lambda_p\)) is ___________ (rounded off to two decimal places).
The de Broglie wavelength (\(\lambda\)) of a particle is given by the equation: \[ \lambda = \frac{h}{p} \] where \(h\) is Planck's constant and \(p\) is the momentum of the particle. The kinetic energy (\(K\)) of a particle is related to its momentum by: \[ K = \frac{p^2}{2m} \implies p = \sqrt{2mK} \] where \(m\) is the mass of the particle. For the electron (\(e\)), the kinetic energy is \(K_e = E\) and its mass is \(m_e\). The de Broglie wavelength of the electron is: \[ \lambda_e = \frac{h}{p_e} = \frac{h}{\sqrt{2m_e K_e}} = \frac{h}{\sqrt{2m_e E}} \] For the proton (\(p\)), the kinetic energy is \(K_p = 3E\) and its mass is \(m_p = 1836 m_e\). The de Broglie wavelength of the proton is: \[ \lambda_p = \frac{h}{p_p} = \frac{h}{\sqrt{2m_p K_p}} = \frac{h}{\sqrt{2(1836 m_e) (3E)}} = \frac{h}{\sqrt{11016 m_e E}} \] Now, we need to find the ratio of their de Broglie wavelengths (\(\lambda_e / \lambda_p\)): \[ \frac{\lambda_e}{\lambda_p} = \frac{\frac{h}{\sqrt{2m_e E}}}{\frac{h}{\sqrt{11016 m_e E}}} = \frac{\sqrt{11016 m_e E}}{\sqrt{2m_e E}} = \sqrt{\frac{11016 m_e E}{2m_e E}} \] \[ \frac{\lambda_e}{\lambda_p} = \sqrt{\frac{11016}{2}} = \sqrt{5508} \] \[ \sqrt{5508} \approx 74.2159 \] Rounding off to two decimal places, the ratio \(\lambda_e / \lambda_p\) is 74.22. This falls within the given range of 74.10 to 74.30.
The above reaction is an example of
A regular dodecagon (12-sided regular polygon) is inscribed in a circle of radius \( r \) cm as shown in the figure. The side of the dodecagon is \( d \) cm. All the triangles (numbered 1 to 12 in the figure) are used to form squares of side \( r \) cm, and each numbered triangle is used only once to form a square. The number of squares that can be formed and the number of triangles required to form each square, respectively, are:
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?
Wavefunctions and energies for a particle confined in a cubic box are \( \psi_{n_x,n_y,n_z} \) and \( E_{n_x,n_y,n_z} \), respectively. The functions \( \phi_1, \phi_2, \phi_3 \), and \( \phi_4 \) are written as linear combinations of \( \psi_{n_x,n_y,n_z} \). Among these functions, the eigenfunction(s) of the Hamiltonian operator for this particle is/are \[ \phi_1 = \frac{1}{\sqrt{2}} \psi_{1,4,1} - \frac{1}{\sqrt{2}} \psi_{2,2,3} \] \[ \phi_2 = \frac{1}{\sqrt{2}} \psi_{1,5,1} + \frac{1}{\sqrt{2}} \psi_{3,3,3} \] \[ \phi_3 = \frac{1}{\sqrt{2}} \psi_{1,3,8} + \frac{1}{\sqrt{2}} \psi_{3,8,1} \] \[ \phi_4 = \frac{1}{2} \psi_{3,3,1} + \frac{\sqrt{3}}{2} \psi_{2,4,1} \]
The correct option(s) of reagents and reaction sequences suitable for carrying out the following transformation is/are
The UV-visible spectrum of [Ni(en)\(_3\)]\(^{2+}\) (en = ethylenediamine) shows absorbance maxima at 11200 cm\(^{-1}\), 18350 cm\(^{-1}\), and 29000 cm\(^{-1}\).
[Given: Atomic number of Ni = 28] The correct match(es) between absorbance maximum and electronic transition is/are