Step 1: Use integration by parts.
Let $u = \log x$, $dv = dx$.
Step 2: Differentiate and integrate.
\[
du = \frac{1}{x}dx,\quad v = x
\]
Step 3: Apply the formula.
\[
\int u\,dv = uv - \int v\,du
\]
Step 4: Compute the integral.
\[
\int \log x\,dx = x\log x - \int x\cdot\frac{1}{x}dx
\]
\[
= x\log x - \int 1\,dx
\]
\[
= x\log x - x + C
\]