\(∫_0^ 1 \frac{ 1}{7^{[\frac{1}{z}}]}dx\), let \(\frac{1}{x}=t\)
\(\frac{−1}{x^2}dx=dt\)
=\(∫_∞ ^1 \frac{1}{−t^27[t]}dt=∫_1 ^∞ \frac{1}{t^27[t]}dt\)
=\(∫_1^ 2 \frac{1}{7t^2}dt+∫_2 ^3 \frac{1}{7^2t^2}dt+…\)
=\(\frac{1}{7}\bigg[−\frac{1}{t}\bigg]_1^ 2+\frac{1}{7 ^2}\bigg[\frac{−1}{t}\bigg]_2^ 3+\frac{1}{7 ^3}\bigg[\frac{−1}{t}\bigg]_2^ 3+…\)
=\(∑_{n=1} ^∞\frac{1}{7_n}\bigg(\frac{1}{n}−\frac{1}{n+1}\bigg)\)
=\(∑_{n=1} ^∞\frac{(\frac{1}{7})^n}{n}−7∑_{n=1} ^∞\frac{(\frac{1}{7})^{n+1}}{n+1}\)
=\(−log\bigg(1−\frac{1}{7}\bigg)+7log\bigg(1−\frac{1}{7}\bigg)+1\)
=\(1+6\log\frac{6}{7}\)
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
The representation of the area of a region under a curve is called to be as integral. The actual value of an integral can be acquired (approximately) by drawing rectangles.
Also, F(x) is known to be a Newton-Leibnitz integral or antiderivative or primitive of a function f(x) on an interval I.
F'(x) = f(x)
For every value of x = I.
Integral calculus helps to resolve two major types of problems: