\(∫_0^ 1 \frac{ 1}{7^{[\frac{1}{z}}]}dx\), let \(\frac{1}{x}=t\)
\(\frac{−1}{x^2}dx=dt\)
=\(∫_∞ ^1 \frac{1}{−t^27[t]}dt=∫_1 ^∞ \frac{1}{t^27[t]}dt\)
=\(∫_1^ 2 \frac{1}{7t^2}dt+∫_2 ^3 \frac{1}{7^2t^2}dt+…\)
=\(\frac{1}{7}\bigg[−\frac{1}{t}\bigg]_1^ 2+\frac{1}{7 ^2}\bigg[\frac{−1}{t}\bigg]_2^ 3+\frac{1}{7 ^3}\bigg[\frac{−1}{t}\bigg]_2^ 3+…\)
=\(∑_{n=1} ^∞\frac{1}{7_n}\bigg(\frac{1}{n}−\frac{1}{n+1}\bigg)\)
=\(∑_{n=1} ^∞\frac{(\frac{1}{7})^n}{n}−7∑_{n=1} ^∞\frac{(\frac{1}{7})^{n+1}}{n+1}\)
=\(−log\bigg(1−\frac{1}{7}\bigg)+7log\bigg(1−\frac{1}{7}\bigg)+1\)
=\(1+6\log\frac{6}{7}\)
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is:
The representation of the area of a region under a curve is called to be as integral. The actual value of an integral can be acquired (approximately) by drawing rectangles.
Also, F(x) is known to be a Newton-Leibnitz integral or antiderivative or primitive of a function f(x) on an interval I.
F'(x) = f(x)
For every value of x = I.
Integral calculus helps to resolve two major types of problems: